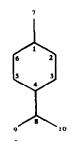
THE CHEMISTRY OF TERPENES—V¹ THE MEERWEIN-PONNDORF-VERLEY REDUCTION OF *p*-MENTHA-1,4(8)-DIEN-3-ONE (PIPERITENONE)


R. ALAN JONES* and T.C. WEBB

School of Chemical Sciences, University of East Anglia, Norwich, NOR 88C

(Received in the UK 11 December 1971; Accepted for publication 5 January 1972)

Abstract -- The major products of the reduction of *p*-mentha-1.4(8)-dicn-3-one with aluminium isopropoxide in isopropanol are *p*-mentha-1(7),2,4(8)-triene (28%), *p*. α -dimethylstyrene (21%), and *p*-cymen-8-ol (20%).

SEVERAL INVESTIGATORS^{2,3,4} have suggested that *p*-mentha-1,4(8)-dien-3-ol (piperitenol) is an intermediate in the acid catalysed conversion of citral into *p*-cymene. As the identification of the methadienol in our studies² depended largely upon an *ab initio* interpretation of its mass spectrum, a procedure which when used even for relatively simple monoterpenes is fraught with ambiguities,⁵ it was expedient to prepare an authentic sample.

Numbering for para-menthane system

In addition to its isolation from the cyclization of citral,³ the only reported synthesis of *p*-mentha-1,4(8)-dien-3-ol is *via* allylic oxidation of *p*-mentha-1,4(8)-diene (terpinolene).⁶ A more practical route appeared to be *via* the Meerwein-Ponndorf-Verley reduction⁷ of the readily obtained⁸ *p*-mentha-1,4(8)-dien-3-one (piperitenone). The technique is generally suitable for the synthesis of α,β -unsaturated alcohols and, although the major products of the reduction of *p*-mentha-4(8)-en-3-one (pulegone) have been reported to be *p*-mentha-2,4(8)-diene and *p*-mentha-3,8-diene,⁹ the method has been successfully used in the conversion of *p*-mentha-4-en-3-one into the corresponding *p*-mentha-6,8-dien-2-one (carvone).¹¹ The reaction of *p*-mentha-1,4(8)-dien-3-one with aluminium isopropoxide in isopropanol, however, gave ten products (Table) the yields of which were, in general, reproducible to *ca* 5% of the figures quoted.

Four terpenoid alcohols, with a combined yield of only ca 10%, were detected, whereas dehydration products^{2,9} of these alcohols accounted for ca 45% of the

Kovats' Retention index	M₩ ^ь	Compound	% yields	Identification
1324	134	<i>p</i> -cymene	7.3	RI, IR, NMR, MS
1438	134	p-mentha-1,3,8-triened	10-4	RI, MS, UV ^e
1480	134	p-mentha-1(7),2,4(8)-triene	28-2	MS, UV
1498	132	p, α -dimethylstyrene	20-9	RI, IR, NMR, MS
1749	152 ^f	p-mentha-1,4(8)-dien-3-ol	0.5	MS
1769	152 ⁵	a p-menthadienol	7.8	MS, IR
1796	152 ^f	p-mentha-1,8-dien-3-ol	1.3	MS
1835	152 ^f	a p-menthadienol	0.8	MS
1866	150	p-cymen-8-ol	19·9	RI, IR, NMR, MS
1990	150	thymol	2.6	RI, IR, MS

TABLE 1. PRODUCTS FROM MEERWEIN-PONNDORF-VERLEY REDUCTION OF p-MENTHA-1,4(8)-DIEN-3-ONE^a

^a Detected using a Perkin-Elmer F11 gas chromatograph with a LAC 2R-466 column at 120° .% yields were calculated from the chromatograms using a planimeter.

^b MW's determined mass spectroinetrically using an 'on-line' GLC/MS unit.

^c RI Kovats' retention index identical with that of authentic sample. Full spectral data are available on request.

⁴ Ref. 12

" Ref. 13

^f Molecular ions very weak, base peaks at m/e 134 (M-H₂O)

overall yield. Pure samples of the *p*-menthatrienes could not be isolated due to their rapid isomerization into *p*-cymene and their identities were confirmed from mass spectral and UV absorption data^{12, 13} and by comparison of their Kovats' retention indices with those of authentic menthatrienes of known structure. The high yields of *p*-cymen-8-ol and *p*, α -dimethylstyrene were somewhat unexpected. Their formation via an allylic oxidation route² or through hydrogen transfer mechanisms involving the reduction products² could be discounted as their relative yields were unchanged when precautions were taken to exclude oxygen from the reaction system and no *p*-menthane or *p*-menthene derivatives were detected. It is possible, however, that they were formed by a hydrogen transfer reaction involving the *p*-mentha-1,4(8)dien-3-one. Thymol is an expected isomerization product of the ketone¹⁴ and analysis of the products before the completion of the reaction showed the presence of the isomeric *p*-mentha-1,8-dien-3-one (isopiperitenone) as well as the unchanged 1,4(8)-dien-3-one.

EXPERIMENTAL

Reduction of p-mentha-1,4(8)-dien-3-one. p-Mentha-1,4(8)-dien-3-one⁸ (7.5 g) was added to aluminium isopropoxide (10 g) in isopropanol (50 ml) and the mixture heated to produce a slow distillation of acetone at a rate of ca 10 drops per min. Heating was continued until the distillate gave a negative test for acetone. The excess isopropanol was removed and the residue acidified with dilute HCl to pH 5-0 and extracted with ether (3 \times 25 ml). Evaporation of the dried (MgSO₄) extracts gave a yellow oil (6.8 g) which was analysed by gas chromatographic and spectroscopic procedures described previously.²

Acknowledgement—We thank the Research Department'Reckitt and Colman (Food Division)'Norwich for financial support for this work.

REFERENCES

- ¹ Part IV. Ee, C. S. and R. A. Jones, *Tetrahedron* 28. 2871 (1972)
- ² D. A. Baines, R. A. Jones, T. C. Webb and I. H. Campion-Smith, Ibid. 26, 4901 (1970)
- ³ A. Verley, Bull. Soc. Chim. France 21, 408 (1899)
- ⁴ O. Zeitschel and H. Schmidt, J. Prakt. Chem. 133, 370 (1932)
- ⁵ H. C. Hill, R. I. Reed and M. J. Robert-Lopes, J. Chem. Soc. (C), 93 (1968)
- ⁶ Y. Fushizaki and M. Saito, Bull. Univ. Osaka Prefect Ser. A, 6, 155 (1958); Chem. Abstr. 53, 4335 (1959)
- ⁷ A. L. Wilds, Organic Reactions, Vol. 2 p. 178, John Wiley and Sons, New York (1944)
- ⁸ J. J. Beereboom, J. Org. Chem. 31, 2027 (1966)
- ⁹ W. J. Grubb and J. Read, J. Chem. Soc. 242 (1934); A. A. Short and J. H. Read, *Ibid.* 1306 (1939); J. Doeuvre and H. Perret, Bull. Soc. Chim. France 2, 298 (1935)
- ¹⁰ D. Malcolm and J. Read, J. Chem. Soc. 1037 (1939)
- ¹¹. R. G. Johnstone and J. Read, Ibid. 233 (1934)
- ¹² A. J. Birch and G. Subba Rao, Aust. J. Chem. 22, 2037 (1969)
- ¹³ R. L. Kenny and G. S. Fisher, J. Gas. Chromatog. 1, 19 (1963)
- ¹⁴ J. L. Simonsen and L. N. Owens, *The Terpenes* (2nd Edition) Vol. I, p. 410. Cambridge University Press (1953)